Revision as of 00:38, 5 December 2023 by Admin (Created page with "'''Solution: B''' Using the perpetuity formula <math display="block"> \begin{gathered} P V_{\text {Liability }}=\frac{10 M}{r}=\frac{10 M}{0.05}=200 M \\ P V_{\text {Liability }}=\frac{10 M}{r}=\frac{10 M}{0.049}=204.0816 M \end{gathered} </math> The value of the liabilities would increase by <math>4.0816 \mathrm{M}</math>. <math display="block"> \begin{aligned} P_{\text {new }}=P_{\text {old }}-P_{\text {old }} \times M D \times \Delta y & \\ \rightarrow M D & =\f...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Dec 05'23

Answer

Solution: B

Using the perpetuity formula

[[math]] \begin{gathered} P V_{\text {Liability }}=\frac{10 M}{r}=\frac{10 M}{0.05}=200 M \\ P V_{\text {Liability }}=\frac{10 M}{r}=\frac{10 M}{0.049}=204.0816 M \end{gathered} [[/math]]


The value of the liabilities would increase by [math]4.0816 \mathrm{M}[/math].

[[math]] \begin{aligned} P_{\text {new }}=P_{\text {old }}-P_{\text {old }} \times M D \times \Delta y & \\ \rightarrow M D & =\frac{P_{\text {old }}-P_{\text {new }}}{P_{\text {old }} \times \Delta y} \\ & =\frac{200-204.0816}{200 \times-0.001}=20.4082 \end{aligned} [[/math]]

You should match the modified duration to neutralize first order interest rate risk.

MD=20.4082

References

Lo, Andrew W.; Wang, Jiang. "MIT Sloan Finance Problems and Solutions Collection Finance Theory I" (PDF). alo.mit.edu. Retrieved November 30, 2023.

00