Exercise
Dec 05'23
Answer
Solution: B
Using the perpetuity formula
[[math]]
\begin{gathered}
P V_{\text {Liability }}=\frac{10 M}{r}=\frac{10 M}{0.05}=200 M \\
P V_{\text {Liability }}=\frac{10 M}{r}=\frac{10 M}{0.049}=204.0816 M
\end{gathered}
[[/math]]
The value of the liabilities would increase by [math]4.0816 \mathrm{M}[/math].
[[math]]
\begin{aligned}
P_{\text {new }}=P_{\text {old }}-P_{\text {old }} \times M D \times \Delta y & \\
\rightarrow M D & =\frac{P_{\text {old }}-P_{\text {new }}}{P_{\text {old }} \times \Delta y} \\
& =\frac{200-204.0816}{200 \times-0.001}=20.4082
\end{aligned}
[[/math]]
You should match the modified duration to neutralize first order interest rate risk.
MD=20.4082
References
Lo, Andrew W.; Wang, Jiang. "MIT Sloan Finance Problems and Solutions Collection Finance Theory I" (PDF). alo.mit.edu. Retrieved November 30, 2023.