Revision as of 18:39, 15 January 2024 by Admin (Created page with " For a new light bulb, you are given: i) <math>{ }_{t} q_{0}=\frac{t^{2}+t}{72}</math> for <math>0 \leq t \leq 8</math> ii) <math>T_{0}</math> is the random variable representing the future lifetime Calculate <math>\operatorname{Var}\left[T_{0}\right]</math>. <ul class="mw-excansopts"><li> 3.9</li><li> 4.1</li><li> 4.3</li><li> 4.5</li><li> 4.7</li></ul>")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
ABy Admin
Jan 15'24

Exercise

For a new light bulb, you are given:

i) [math]{ }_{t} q_{0}=\frac{t^{2}+t}{72}[/math] for [math]0 \leq t \leq 8[/math]

ii) [math]T_{0}[/math] is the random variable representing the future lifetime

Calculate [math]\operatorname{Var}\left[T_{0}\right][/math].

  • 3.9
  • 4.1
  • 4.3
  • 4.5
  • 4.7
ABy Admin
Jan 15'24

Answer: A

[math]E\left[T_{0}\right]=\int_{0}^{8}{ }_{t} p_{0} d t=\int_{0}^{8}\left(1-\frac{t^{2}+t}{72}\right) d t \rightarrow \frac{1}{72}\left[72 t-\frac{t^{3}}{3}-\frac{t^{2}}{2}\right]_{0}^{8}=5.1852[/math]

[math]E\left[T_{0}{ }^{2}\right]=2 \int_{0}^{8}\left({ }_{t} p_{0} \times t\right) d t=\frac{2}{72} \int_{0}^{8}\left(72 t-t^{3}-t^{2}\right) d t=\frac{2}{72}\left[36 t^{2}-\frac{t^{4}}{4}-\frac{t^{3}}{3}\right]_{0}^{8}=30.815[/math]

[math]\operatorname{Var}\left[T_{0}\right]=E\left[T_{0}^{2}\right]-\left(E\left[T_{0}\right]\right)^{2}=3.9287[/math]

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00