Exercise
For a new light bulb, you are given:
i) [math]{ }_{t} q_{0}=\frac{t^{2}+t}{72}[/math] for [math]0 \leq t \leq 8[/math]
ii) [math]T_{0}[/math] is the random variable representing the future lifetime
Calculate [math]\operatorname{Var}\left[T_{0}\right][/math].
- 3.9
- 4.1
- 4.3
- 4.5
- 4.7
Answer: A
[math]E\left[T_{0}\right]=\int_{0}^{8}{ }_{t} p_{0} d t=\int_{0}^{8}\left(1-\frac{t^{2}+t}{72}\right) d t \rightarrow \frac{1}{72}\left[72 t-\frac{t^{3}}{3}-\frac{t^{2}}{2}\right]_{0}^{8}=5.1852[/math]
[math]E\left[T_{0}{ }^{2}\right]=2 \int_{0}^{8}\left({ }_{t} p_{0} \times t\right) d t=\frac{2}{72} \int_{0}^{8}\left(72 t-t^{3}-t^{2}\right) d t=\frac{2}{72}\left[36 t^{2}-\frac{t^{4}}{4}-\frac{t^{3}}{3}\right]_{0}^{8}=30.815[/math]
[math]\operatorname{Var}\left[T_{0}\right]=E\left[T_{0}^{2}\right]-\left(E\left[T_{0}\right]\right)^{2}=3.9287[/math]