Revision as of 23:11, 15 January 2024 by Admin (Created page with "(i) An excerpt from a select and ultimate life table with a select period of 3 years: {| class="table" ! <math>x</math> !! <math>l_{[x]}</math> !! <math>l_{[x]+1}</math> !! <math>l_{[x]+2}</math> !! <math>l_{x+3}</math> !! <math>x+3</math> |- | 60 || 80,000 || 79,000 || 77,000 || 74,000 || 63 |- | 61 || 78,000 || 76,000 || 73,000 || 70,000 || 64 |- | 62 || 75,000 || 72,000 || 69,000 || 67,000 || 65 |- | 63 || 71,000 || 68,000 || 66,000 || 65,000 || 66 |} (ii) Deaths fo...")
Jan 15'24
Exercise
(i) An excerpt from a select and ultimate life table with a select period of 3 years:
[math]x[/math] | [math]l_{[x]}[/math] | [math]l_{[x]+1}[/math] | [math]l_{[x]+2}[/math] | [math]l_{x+3}[/math] | [math]x+3[/math] |
---|---|---|---|---|---|
60 | 80,000 | 79,000 | 77,000 | 74,000 | 63 |
61 | 78,000 | 76,000 | 73,000 | 70,000 | 64 |
62 | 75,000 | 72,000 | 69,000 | 67,000 | 65 |
63 | 71,000 | 68,000 | 66,000 | 65,000 | 66 |
(ii) Deaths follow a constant force of mortality over each year of age
Calculate [math]1000_{2 \mid 3} q_{[60]+0.75}[/math].
- 104
- 117
- 122
- 135
- 142
Jan 15'24
Answer: B
Under constant force over each year of age, [math]l_{x+k}=\left(l_{x}\right)^{1-k}\left(l_{x+1}\right)^{k}[/math] for [math]x[/math] an integer and [math]0 \leq k \leq 1[/math].
[[math]]
\begin{aligned}
& { }_{2 \mid 3} q_{[60]+0.75}=\frac{l_{[60]+2.75}-l_{[60]+5.75}}{l_{[60]+0.75}} \\
& l_{[60]+0.75}=(80,000)^{0.25}(79,000)^{0.75}=79,249 \\
& l_{[60]+2.75}=(77,000)^{0.25}(74,000)^{0.75}=74,739 \\
& l_{[60]+5.75}=(67,000)^{0.25}(65,000)^{0.75}=65,494
\end{aligned}
[[/math]]
[[math]]{ }_{2 \mid 3} q_{[60]+0.75}=\frac{l_{[60]+2.75}-l_{[60]+5.75}}{l_{[60]+0.75}}=\frac{74,739-65,494}{79,249}=0.11679[[/math]]
[[math]]1000_{2 \mid 3} q_{[60]+0.75}=116.8[[/math]]