Revision as of 23:29, 17 January 2024 by Admin
ABy Admin
Jan 15'24
Exercise
You are given that mortality follows Makeham's Law with the following parameters:
[[math]]
\begin{array}{ll}
\text { i) } & A=0.004 \\
\text { ii) } & B=0.00003 \\
\text { iii) } & c=1.1
\end{array}
[[/math]]
Let [math]L_{15}[/math] be the random variable representing the number of lives alive at the end of 15 years if there are 10,000 lives age 50 at time 0 .
Calculate [math]\operatorname{Var}\left[L_{15}\right][/math].
- 1,317
- 1,328
- 1,339
- 1,350
- 1,361
ABy Admin
Jan 15'24
Answer: E
The distribution is binomial with 10,000 trials.
[[math]]
\begin{aligned}
& \operatorname{Var}\left[L_{15}\right]=n p q=10,000\left({ }_{15} p_{50}\right)\left({ }_{15} q_{50}\right) \\
& { }_{15} p_{50}=e^{\left[-A(15)-\frac{B}{\ln C} c^{50}\left(c^{15}-1\right)\right]}=0.837445 \\
& { }_{15} q_{50}=1-{ }_{15} p_{50}=0.162555
\end{aligned}
[[/math]]
[math]\operatorname{Var}\left[L_{15}\right]=10,000(0.837445)(0.162555)=1361.3[/math]