Revision as of 00:25, 18 January 2024 by Admin
ABy Admin
Jan 15'24

Exercise

You are given the survival function:

[[math]]S_{0}(x)=\left(1-\frac{x}{60}\right)^{\frac{1}{3}}, \quad 0 \leq x \leq 60.[[/math]]

Calculate [math]1000 \mu_{35}[/math].

  • 5.6
  • 6.7
  • 13.3
  • 16.7
  • 20.1

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

ABy Admin
Jan 15'24

Answer: C

[[math]] \begin{aligned} \mu_{x} & =-\frac{d}{d_{x}} \ln S_{0}(x)=-\frac{1}{3} \frac{d}{d_{x}} \ln \left(1-\frac{x}{60}\right) \\ & =\frac{1}{180}\left(1-\frac{x}{60}\right)^{-1}=\frac{1}{3(60-x)} \end{aligned} [[/math]]


Therefore, [math]1000 \mu_{35}=(1000) \frac{1}{3(25)}=\frac{1000}{75}=13.3[/math].

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00