Revision as of 01:26, 18 January 2024 by Admin
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jan 15'24

Exercise

You are given:

(i) [math]\quad S_{0}(t)=\left(1-\frac{t}{\omega}\right)^{\frac{1}{4}}[/math], for [math]0 \leq t \leq \omega[/math]

(ii) [math]\quad \mu_{65}=\frac{1}{180}[/math]

Calculate [math]e_{106}[/math], the curtate expectation of life at age 106 .

  • 2.2
  • 2.5
  • 2.7
  • 3.0
  • 3.2

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 15'24

Answer: B

Since [math]S_{0}(t)=1-F_{0}(t)=\left(1-\frac{t}{\omega}\right)^{\frac{1}{4}}[/math], we have [math]\ln \left[S_{0}(t)\right]=\frac{1}{4} \ln \left[\frac{\omega-t}{\omega}\right][/math].

Then [math]\mu_{t}=-\frac{d}{d t} \log S_{0}(t)=\frac{1}{4} \frac{1}{\omega-t}[/math], and [math]\mu_{65}=\frac{1}{180}=\frac{1}{4} \frac{1}{\omega-65} \Rightarrow \omega=110[/math].

[math]e_{106}=\sum_{t=1}^{3}{ }_{t} p_{106}[/math], since [math]{ }_{4} p_{106}=0[/math]

[math]{ }_{t} p_{106}=\frac{S_{0}(106+t)}{S_{0}(106)}=\frac{\left(1-\frac{106+t}{110}\right)^{1 / 4}}{\left(1-\frac{106}{110}\right)^{1 / 4}}=\left(\frac{4-t}{4}\right)^{1 / 4}[/math]

[math]e_{106}=\sum_{i=1}^{i=4}{ }_{t} p_{106}=\frac{1}{4^{0.25}}\left(1^{0.25}+2^{0.25}+3^{0.25}\right)=2.4786[/math]

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00