Revision as of 01:27, 18 January 2024 by Admin
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jan 15'24

Exercise

You are given the survival function:

[[math]]S_{0}(x)=\left(1-\frac{x}{60}\right)^{\frac{1}{3}}, \quad 0 \leq x \leq 60.[[/math]]

Calculate [math]1000 \mu_{35}[/math].

  • 5.6
  • 6.7
  • 13.3
  • 16.7
  • 20.1

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Jan 15'24

Answer: C

[[math]] \begin{aligned} \mu_{x} & =-\frac{d}{d_{x}} \ln S_{0}(x)=-\frac{1}{3} \frac{d}{d_{x}} \ln \left(1-\frac{x}{60}\right) \\ & =\frac{1}{180}\left(1-\frac{x}{60}\right)^{-1}=\frac{1}{3(60-x)} \end{aligned} [[/math]]


Therefore, [math]1000 \mu_{35}=(1000) \frac{1}{3(25)}=\frac{1000}{75}=13.3[/math].

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00