Revision as of 12:57, 18 January 2024 by Admin (Created page with "'''Answer: A''' Probability (50) survives one year under Standard Ultimate Life Table <math>=1-0.001209=</math> 0.998791 Probability (50) survives one year following surgery <math>=0.55 \times 0.998791=0.5493=p_{50}</math> <math display="block"> \begin{aligned} q_{50}= & 1-p_{50}=0.4507 \\ A_{50: 31} & =q_{50}\left(\frac{1}{1.05}\right)+p_{50} q_{51}\left(\frac{1}{1.05^{2}}\right)+p_{50} p_{51} q_{52}\left(\frac{1}{1.05^{3}}\right) \\ & =(0.4507)\left(\frac{1}{1.05}\...")
Exercise
Jan 18'24
Answer
Answer: A
Probability (50) survives one year under Standard Ultimate Life Table [math]=1-0.001209=[/math] 0.998791
Probability (50) survives one year following surgery [math]=0.55 \times 0.998791=0.5493=p_{50}[/math]
[[math]]
\begin{aligned}
q_{50}= & 1-p_{50}=0.4507 \\
A_{50: 31} & =q_{50}\left(\frac{1}{1.05}\right)+p_{50} q_{51}\left(\frac{1}{1.05^{2}}\right)+p_{50} p_{51} q_{52}\left(\frac{1}{1.05^{3}}\right) \\
& =(0.4507)\left(\frac{1}{1.05}\right)+(0.5493)(0.001331)\left(\frac{1}{1.05^{2}}\right)+(0.5493)(0.99867)(0.001469)\left(\frac{1}{1.05^{3}}\right) \\
& =0.4306
\end{aligned}
[[/math]]
Therefore, answer [math]=100,000 \times 0.4306 \approx 43,000[/math]