Exercise


Jan 18'24

Answer

Answer: A

Probability (50) survives one year under Standard Ultimate Life Table [math]=1-0.001209=[/math] 0.998791

Probability (50) survives one year following surgery [math]=0.55 \times 0.998791=0.5493=p_{50}[/math]

[[math]] \begin{aligned} q_{50}= & 1-p_{50}=0.4507 \\ A_{50: 31} & =q_{50}\left(\frac{1}{1.05}\right)+p_{50} q_{51}\left(\frac{1}{1.05^{2}}\right)+p_{50} p_{51} q_{52}\left(\frac{1}{1.05^{3}}\right) \\ & =(0.4507)\left(\frac{1}{1.05}\right)+(0.5493)(0.001331)\left(\frac{1}{1.05^{2}}\right)+(0.5493)(0.99867)(0.001469)\left(\frac{1}{1.05^{3}}\right) \\ & =0.4306 \end{aligned} [[/math]]


Therefore, answer [math]=100,000 \times 0.4306 \approx 43,000[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00