Revision as of 13:02, 18 January 2024 by Admin (Created page with "'''Answer: C''' <math>Z_{3}=2 Z_{1}+Z_{2}</math> so that <math>\operatorname{Var}\left(Z_{3}\right)=4 \operatorname{Var}\left(Z_{1}\right)+\operatorname{Var}\left(Z_{2}\right)+4 \operatorname{Cov}\left(Z_{1}, Z_{2}\right)</math> where <math>\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=\underbrace{E\left[Z_{1} Z_{2}\right]}_{=0}-E\left[Z_{1}\right] E\left[Z_{2}\right]=-(1.65)(10.75)</math> <math display="block"> \begin{aligned} \operatorname{Var}\left(Z_{3}\right) & =4...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


Jan 18'24

Answer

Answer: C

[math]Z_{3}=2 Z_{1}+Z_{2}[/math] so that [math]\operatorname{Var}\left(Z_{3}\right)=4 \operatorname{Var}\left(Z_{1}\right)+\operatorname{Var}\left(Z_{2}\right)+4 \operatorname{Cov}\left(Z_{1}, Z_{2}\right)[/math]

where [math]\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=\underbrace{E\left[Z_{1} Z_{2}\right]}_{=0}-E\left[Z_{1}\right] E\left[Z_{2}\right]=-(1.65)(10.75)[/math]

[[math]] \begin{aligned} \operatorname{Var}\left(Z_{3}\right) & =4(46.75)+50.78-4(1.65)(10.75) \\ & =166.83 \end{aligned} [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00