Exercise
Jan 18'24
Answer
Answer: C
[math]Z_{3}=2 Z_{1}+Z_{2}[/math] so that [math]\operatorname{Var}\left(Z_{3}\right)=4 \operatorname{Var}\left(Z_{1}\right)+\operatorname{Var}\left(Z_{2}\right)+4 \operatorname{Cov}\left(Z_{1}, Z_{2}\right)[/math]
where [math]\operatorname{Cov}\left(Z_{1}, Z_{2}\right)=\underbrace{E\left[Z_{1} Z_{2}\right]}_{=0}-E\left[Z_{1}\right] E\left[Z_{2}\right]=-(1.65)(10.75)[/math]
[[math]]
\begin{aligned}
\operatorname{Var}\left(Z_{3}\right) & =4(46.75)+50.78-4(1.65)(10.75) \\
& =166.83
\end{aligned}
[[/math]]