Revision as of 21:11, 19 January 2024 by Admin (Created page with "'''Answer: D''' <math display="block"> \begin{aligned} & G \ddot{a}_{x: \overline{30}}=\mathrm{APV}[\text { gross premium }]=\mathrm{APV}[\text { Benefits }+ \text { expenses }] \\ & \quad=F A_{x}+\left(30+30 \ddot{a}_{x}\right)+G\left(0.6+0.10 \ddot{a}_{x: 30}+0.10 \ddot{a}_{x: 15}\right) \\ & G=\frac{F A_{x}+30+30 \ddot{a}_{x}}{\ddot{a}_{x: 30 \mid}-0.6-0.1 \ddot{a}_{x: 30}-0.1 \ddot{a}_{x: 15}} \\ & =\frac{F A_{x}+30+30(15.3926)}{14.0145-0.6-0.1(14.0145)-0.1(10.1329...")
Exercise
ABy Admin
Jan 19'24
Answer
Answer: D
[[math]]
\begin{aligned}
& G \ddot{a}_{x: \overline{30}}=\mathrm{APV}[\text { gross premium }]=\mathrm{APV}[\text { Benefits }+ \text { expenses }] \\
& \quad=F A_{x}+\left(30+30 \ddot{a}_{x}\right)+G\left(0.6+0.10 \ddot{a}_{x: 30}+0.10 \ddot{a}_{x: 15}\right) \\
& G=\frac{F A_{x}+30+30 \ddot{a}_{x}}{\ddot{a}_{x: 30 \mid}-0.6-0.1 \ddot{a}_{x: 30}-0.1 \ddot{a}_{x: 15}} \\
& =\frac{F A_{x}+30+30(15.3926)}{14.0145-0.6-0.1(14.0145)-0.1(10.1329)} \\
& =\frac{F A_{x}+491.78}{10.9998} \\
& =\frac{F A_{x}}{10.9998}+\frac{491.78}{10.9998}=\frac{F A_{x}}{10.9998}+44.71 \\
& \Rightarrow h=44.71
\end{aligned}
[[/math]]