Revision as of 21:11, 19 January 2024 by Admin (Created page with "'''Answer: D''' <math display="block"> \begin{aligned} & G \ddot{a}_{x: \overline{30}}=\mathrm{APV}[\text { gross premium }]=\mathrm{APV}[\text { Benefits }+ \text { expenses }] \\ & \quad=F A_{x}+\left(30+30 \ddot{a}_{x}\right)+G\left(0.6+0.10 \ddot{a}_{x: 30}+0.10 \ddot{a}_{x: 15}\right) \\ & G=\frac{F A_{x}+30+30 \ddot{a}_{x}}{\ddot{a}_{x: 30 \mid}-0.6-0.1 \ddot{a}_{x: 30}-0.1 \ddot{a}_{x: 15}} \\ & =\frac{F A_{x}+30+30(15.3926)}{14.0145-0.6-0.1(14.0145)-0.1(10.1329...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 19'24

Answer

Answer: D

[[math]] \begin{aligned} & G \ddot{a}_{x: \overline{30}}=\mathrm{APV}[\text { gross premium }]=\mathrm{APV}[\text { Benefits }+ \text { expenses }] \\ & \quad=F A_{x}+\left(30+30 \ddot{a}_{x}\right)+G\left(0.6+0.10 \ddot{a}_{x: 30}+0.10 \ddot{a}_{x: 15}\right) \\ & G=\frac{F A_{x}+30+30 \ddot{a}_{x}}{\ddot{a}_{x: 30 \mid}-0.6-0.1 \ddot{a}_{x: 30}-0.1 \ddot{a}_{x: 15}} \\ & =\frac{F A_{x}+30+30(15.3926)}{14.0145-0.6-0.1(14.0145)-0.1(10.1329)} \\ & =\frac{F A_{x}+491.78}{10.9998} \\ & =\frac{F A_{x}}{10.9998}+\frac{491.78}{10.9998}=\frac{F A_{x}}{10.9998}+44.71 \\ & \Rightarrow h=44.71 \end{aligned} [[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00