Revision as of 21:31, 19 January 2024 by Admin (Created page with "'''Answer: B''' The probability that the endowment payment will be made for a given contract is: <math display="block"> \begin{aligned} { }_{15} p_{x} & =\exp \left(-\int_{0}^{15} 0.02 t d t\right) \\ & =\exp \left(-\left.0.01 t^{2}\right|_{0} ^{15}\right) \\ & =\exp \left(-0.01(15)^{2}\right) \\ & =0.1054 \end{aligned} </math> Because the premium is set by the equivalence principle, we have <math>E\left[{ }_{0} L\right]=0</math>. Further, <math display="block">...")
Exercise
ABy Admin
Jan 19'24
Answer
Answer: B
The probability that the endowment payment will be made for a given contract is:
[[math]]
\begin{aligned}
{ }_{15} p_{x} & =\exp \left(-\int_{0}^{15} 0.02 t d t\right) \\
& =\exp \left(-\left.0.01 t^{2}\right|_{0} ^{15}\right) \\
& =\exp \left(-0.01(15)^{2}\right) \\
& =0.1054
\end{aligned}
[[/math]]
Because the premium is set by the equivalence principle, we have [math]E\left[{ }_{0} L\right]=0[/math]. Further,
[[math]]
\begin{aligned}
\operatorname{Var}\left({ }_{0} L\right) & =500\left[\left(10,000 v^{15}\right)^{2}\left({ }_{15} p_{x}\right)\left(1-{ }_{15} p_{x}\right)\right] \\
& =1,942,329,000
\end{aligned}
[[/math]]
Then, using the normal approximation, the approximate probability that the aggregate losses exceed 50,000 is
[math]P\left({ }_{0} L\gt50,000\right)=P\left(Z\gt\frac{50,000-0}{\sqrt{1,942,329,000}}\right)=P(Z\gt1.13)=0.13[/math]