Exercise


ABy Admin
Jan 19'24

Answer

Answer: B

The probability that the endowment payment will be made for a given contract is:

[[math]] \begin{aligned} { }_{15} p_{x} & =\exp \left(-\int_{0}^{15} 0.02 t d t\right) \\ & =\exp \left(-\left.0.01 t^{2}\right|_{0} ^{15}\right) \\ & =\exp \left(-0.01(15)^{2}\right) \\ & =0.1054 \end{aligned} [[/math]]


Because the premium is set by the equivalence principle, we have [math]E\left[{ }_{0} L\right]=0[/math]. Further,

[[math]] \begin{aligned} \operatorname{Var}\left({ }_{0} L\right) & =500\left[\left(10,000 v^{15}\right)^{2}\left({ }_{15} p_{x}\right)\left(1-{ }_{15} p_{x}\right)\right] \\ & =1,942,329,000 \end{aligned} [[/math]]

Then, using the normal approximation, the approximate probability that the aggregate losses exceed 50,000 is

[math]P\left({ }_{0} L\gt50,000\right)=P\left(Z\gt\frac{50,000-0}{\sqrt{1,942,329,000}}\right)=P(Z\gt1.13)=0.13[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00