Exercise
ABy Admin
Jan 19'24
Answer
Answer: B
The probability that the endowment payment will be made for a given contract is:
[[math]]
\begin{aligned}
{ }_{15} p_{x} & =\exp \left(-\int_{0}^{15} 0.02 t d t\right) \\
& =\exp \left(-\left.0.01 t^{2}\right|_{0} ^{15}\right) \\
& =\exp \left(-0.01(15)^{2}\right) \\
& =0.1054
\end{aligned}
[[/math]]
Because the premium is set by the equivalence principle, we have [math]E\left[{ }_{0} L\right]=0[/math]. Further,
[[math]]
\begin{aligned}
\operatorname{Var}\left({ }_{0} L\right) & =500\left[\left(10,000 v^{15}\right)^{2}\left({ }_{15} p_{x}\right)\left(1-{ }_{15} p_{x}\right)\right] \\
& =1,942,329,000
\end{aligned}
[[/math]]
Then, using the normal approximation, the approximate probability that the aggregate losses exceed 50,000 is
[math]P\left({ }_{0} L\gt50,000\right)=P\left(Z\gt\frac{50,000-0}{\sqrt{1,942,329,000}}\right)=P(Z\gt1.13)=0.13[/math]