Revision as of 21:35, 19 January 2024 by Admin (Created page with "'''Answer: A''' Let <math>B</math> be the amount of death benefit. <math>\mathrm{EPV}(</math> Premiums <math>)=500 \ddot{a}_{61}=500(14.6491)=7324.55</math> <math>\mathrm{EPV}(</math> Benefits <math>)=\mathrm{B} \cdot A_{61}=(0.30243) \mathrm{B}</math> <math>\operatorname{EPV}(</math> Expenses <math>)=(0.12)(500)+(0.03)(500) \ddot{a}_{61}=(0.12)(500)+(0.03)(7324.55)=279.74</math> <math>\mathrm{EPV}(</math> Premiums <math>)=\mathrm{EPV}(</math> Benefits <math>)+\math...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Exercise


ABy Admin
Jan 19'24

Answer

Answer: A

Let [math]B[/math] be the amount of death benefit.

[math]\mathrm{EPV}([/math] Premiums [math])=500 \ddot{a}_{61}=500(14.6491)=7324.55[/math]

[math]\mathrm{EPV}([/math] Benefits [math])=\mathrm{B} \cdot A_{61}=(0.30243) \mathrm{B}[/math]

[math]\operatorname{EPV}([/math] Expenses [math])=(0.12)(500)+(0.03)(500) \ddot{a}_{61}=(0.12)(500)+(0.03)(7324.55)=279.74[/math]

[math]\mathrm{EPV}([/math] Premiums [math])=\mathrm{EPV}([/math] Benefits [math])+\mathrm{EPV}([/math] Expenses [math])[/math]

[math]7324.55=(0.30243) \mathrm{B}+279.74[/math]

[math]7044.81=(0.30243) \mathrm{B}[/math]

[math]\mathrm{B}=23,294[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00