Revision as of 02:53, 20 January 2024 by Admin (Created page with "'''Answer: C''' The simplest solution is recursive: <math>{ }_{0} V=0</math> since the policy values are net premium policy values. <math>q_{[70]}=(0.7)(0.010413)=0.007289</math> <math>{ }_{1} V=\frac{(0+35.168)(1.05)-(1000)(0.007289)}{1-0.007289}=29.86</math> Prospectively, <math>q_{[70]+1}=(0.8)(0.011670)=0.009336 ; \quad q_{[70]+2}=(0.9)(0.013081)=0.011773</math> <math <math display="block"> \begin{aligned} & A_{[70]+1}=(0.009336) v+(1-0.009336)(0.011773) v^{2}...")
Exercise
ABy Admin
Jan 20'24
Answer
Answer: C
The simplest solution is recursive:
[math]{ }_{0} V=0[/math] since the policy values are net premium policy values.
[math]q_{[70]}=(0.7)(0.010413)=0.007289[/math]
[math]{ }_{1} V=\frac{(0+35.168)(1.05)-(1000)(0.007289)}{1-0.007289}=29.86[/math]
Prospectively, [math]q_{[70]+1}=(0.8)(0.011670)=0.009336 ; \quad q_{[70]+2}=(0.9)(0.013081)=0.011773[/math]
[[math]]
\begin{aligned}
& A_{[70]+1}=(0.009336) v+(1-0.009336)(0.011773) v^{2} \\
& \quad+(1-0.009336)(1-0.011773)(0.47580) v^{2}=0.44197 \\
& \ddot{a}_{[70]+1}=\left(1-A_{[70]+1}\right) / d=(1-0.44197) /(0.05 / 1.05)=11.7186 \\
& { }_{1} V=(1000)(0.44197)-(11.7186)(35.168)=29.85
\end{aligned}
[[/math]]