Revision as of 03:10, 20 January 2024 by Admin (Created page with "'''Answer: D''' <math>{ }_{20} V=0==>1000 A_{65}=(P+W) \times \ddot{a}_{65}</math> At issue, present value of benefits must equal present value of premium, so: <math>1000 A_{45}=P \ddot{a}_{45}+W_{20} E_{45} \times \ddot{a}_{65}</math> <math>354.77=(P+W)(13.5498) \Rightarrow P+W=26.182674 \Rightarrow P=26.182674-W</math> <math>151.61=17.8162 P+W(0.35994)(13.5498)</math> <math>151.61=17.8162(26.182674-W)+W(0.35994)(13.5498)</math> <math>\Rightarrow W=24.33447</math...")
Exercise
ABy Admin
Jan 20'24
Answer
Answer: D
[math]{ }_{20} V=0==\gt1000 A_{65}=(P+W) \times \ddot{a}_{65}[/math]
At issue, present value of benefits must equal present value of premium, so:
[math]1000 A_{45}=P \ddot{a}_{45}+W_{20} E_{45} \times \ddot{a}_{65}[/math]
[math]354.77=(P+W)(13.5498) \Rightarrow P+W=26.182674 \Rightarrow P=26.182674-W[/math]
[math]151.61=17.8162 P+W(0.35994)(13.5498)[/math]
[math]151.61=17.8162(26.182674-W)+W(0.35994)(13.5498)[/math]
[math]\Rightarrow W=24.33447[/math]