Revision as of 02:12, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Explain why it is not possible to define a uniform distribution function (see Definition) on a countably infinite sample space. '' Hint'': Assume <math>m(\omega) = a</math> for all <math>\omega</math>, where <math>0...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Explain why it is not possible to define a
uniform distribution function (see Definition) on a countably infinite sample space. Hint: Assume [math]m(\omega) = a[/math] for all [math]\omega[/math], where [math]0 \leq a \leq 1[/math]. Does [math]m(\omega)[/math] have all the properties of a distribution function?