Revision as of 02:13, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Choose independently two numbers <math>B</math> and <math>C</math> ''at random'' from the interval <math>[-1,1]</math> with uniform distribution, and consider the quadratic equation <math display="block"> x^2 + Bx + C = 0\ . </math> Find the prob...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Choose independently two numbers [math]B[/math] and [math]C[/math] at random from the
interval [math][-1,1][/math] with uniform distribution, and consider the quadratic equation
[[math]]
x^2 + Bx + C = 0\ .
[[/math]]
Find the probability that the roots of this equation
- are both real.
- are both positive.
Hints: (a) requires [math]0 \leq B^2 - 4C[/math], (b) requires [math]0 \leq B^2 - 4C[/math], [math]B \leq 0[/math], [math]0 \leq C[/math].