Revision as of 02:17, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Four women, A, B, C, and D, check their hats, and the hats are returned in a random manner. Let <math>\Omega</math> be the set of all possible permutations of A, B, C, D. Let <math>X_j = 1</math> if the <math>j</math>th woman gets her own hat ba...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Four women, A, B, C, and D, check their hats, and the hats are returned
in a random manner. Let [math]\Omega[/math] be the set of all possible permutations of A, B, C, D. Let [math]X_j = 1[/math] if the [math]j[/math]th woman gets her own hat back and 0 otherwise. What is the distribution of [math]X_j[/math]? Are the [math]X_i[/math]'s mutually independent?