Revision as of 02:17, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Assume that the random variables <math>X</math> and <math>Y</math> have the joint distribution given in Table. <span id="table 4.5"/> {|class="table" |+ Joint distribution. |- ||| || <math>Y</math> ||...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Assume that the random variables [math]X[/math] and [math]Y[/math] have the joint distribution

given in Table.

Joint distribution.
[math]Y[/math]
-1 0 1 2
[math]X[/math] -1 0 1/36 1/6 1/12
0 1/18 0 1/18 0
1 0 1/36 1/6 1/12
2 1/12 0 1/12 1/6
  • What is [math]P(X \geq 1\ \mbox {and\ } Y \leq 0)[/math]?
  • What is the conditional probability that [math]Y \leq 0[/math] given that [math]X = 2[/math]?
  • Are [math]X[/math] and [math]Y[/math] independent?
  • What is the distribution of [math]Z = XY[/math]?