Revision as of 02:17, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Assume that the random variables <math>X</math> and <math>Y</math> have the joint distribution given in Table. <span id="table 4.5"/> {|class="table" |+ Joint distribution. |- ||| || <math>Y</math> ||...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Assume that the random variables [math]X[/math] and [math]Y[/math] have the joint distribution
given in Table.
[math]Y[/math] | |||||
-1 | 0 | 1 | 2 | ||
[math]X[/math] | -1 | 0 | 1/36 | 1/6 | 1/12 |
0 | 1/18 | 0 | 1/18 | 0 | |
1 | 0 | 1/36 | 1/6 | 1/12 | |
2 | 1/12 | 0 | 1/12 | 1/6 |
- What is [math]P(X \geq 1\ \mbox {and\ } Y \leq 0)[/math]?
- What is the conditional probability that [math]Y \leq 0[/math] given that [math]X = 2[/math]?
- Are [math]X[/math] and [math]Y[/math] independent?
- What is the distribution of [math]Z = XY[/math]?