Revision as of 02:18, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Prove that, if <math>A_1</math>, <math>A_2</math>, \dots, <math>A_n</math> are independent events defined on a sample space <math>\Omega</math> and if <math>0 < P(A_j) < 1</math> for all <math>j</math>, then <math>\Omega</math> must have at le...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Prove that, if [math]A_1[/math], [math]A_2[/math], \dots, [math]A_n[/math] are independent events
defined on a sample space [math]\Omega[/math] and if [math]0 \lt P(A_j) \lt 1[/math] for all [math]j[/math], then [math]\Omega[/math] must have at least [math]2^n[/math] points.