Revision as of 02:18, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Prove that if <math>A</math> attracts both <math>B</math> and <math>C</math>, and <math>A</math> repels <math>B \cap C</math>, then <math>A</math> attracts <math>B \cup C</math>. Is there any example in which <math>A</math> attracts both <math>B<...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Prove that if [math]A[/math] attracts both [math]B[/math] and [math]C[/math], and [math]A[/math] repels [math]B \cap C[/math],
then [math]A[/math] attracts [math]B \cup C[/math]. Is there any example in which [math]A[/math] attracts both [math]B[/math] and [math]C[/math] and repels [math]B \cup C[/math]?