Revision as of 02:19, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> In Exercise \ref{sec 2.2}. you proved the following: If you take a stick of unit length and break it into three pieces, choosing the breaks at random (i.e., choosing two real numbers independently and uniformly f...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
In Exercise \ref{sec 2.2}. you
proved the following: If you take a stick of unit length and break it into three pieces, choosing the breaks at random (i.e., choosing two real numbers independently and uniformly from [0, 1]), then the probability that the three pieces form a triangle is 1/4. Consider now a similar experiment: First break the stick at random, then break the longer piece at random. Show that the two experiments are actually quite different, as follows:
- Write a program which simulates both cases for a run of 1000 trials, prints out the proportion of successes for each run, and repeats this process ten times. (Call a trial a success if the three pieces do form a triangle.) Have your program pick [math](x,y)[/math] at random in the unit square, and in each case use [math]x[/math] and [math]y[/math] to find the two breaks. For each experiment, have it plot [math](x,y)[/math] if [math](x,y)[/math] gives a success.
- Show that in the second experiment the theoretical probability of success is actually [math]2\log 2 - 1[/math].