Revision as of 02:21, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with cumulative distribution function </math> F(x) = \left \{ \begin{array}{ll} 0, & \mbox{if <math>x < 0</math>}, \\ \sin^2(\pi x/2), & \mbox{if <math>0 \leq x \le...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math] be a random variable with cumulative distribution function
</math> F(x) = \left \{ \begin{array}{ll}
0, & \mbox{if [math]x \lt 0[/math]}, \\ \sin^2(\pi x/2), & \mbox{if [math]0 \leq x \leq 1[/math]}, \\ 1, & \mbox{if [math]1 \lt x[/math]}. \end{array} \right.
[[math]]
\ltul\gt\ltli\gt What is the density function $f_X$ for \ltmath\gtX[[/math]]
?