Revision as of 02:25, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>T</math> be a random variable with range <math>[0,\infty]</math> and <math>f_T</math> its density function. Find <math>\mu(T)</math> and <math>\sigma^2(T)</math> if, for <math>t < 0</math>, <math>f_T(t) = 0</math>, and for <math>t >...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]T[/math] be a random variable with range [math][0,\infty][/math] and
[math]f_T[/math] its density function. Find [math]\mu(T)[/math] and [math]\sigma^2(T)[/math] if, for [math]t \lt 0[/math], [math]f_T(t) = 0[/math], and for [math]t \gt 0[/math],
- [math]f_T(t) = 3e^{-3t}[/math].
- [math]f_T(t) = 9te^{-3t}[/math].
- [math]f_T(t) = 3/(1 + t)^4[/math].