Revision as of 02:25, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with density function <math>f_X</math>. Show, using elementary calculus, that the function <math display="block"> \phi(a) = E((X - a)^2) </math> takes its minimum value when <math>a = \mu(X)</math>, and in...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math] be a random variable with density function [math]f_X[/math].
Show, using elementary calculus, that the function
[[math]]
\phi(a) = E((X - a)^2)
[[/math]]
takes its minimum value when [math]a = \mu(X)[/math], and in that case [math]\phi(a) = \sigma^2(X)[/math].