Revision as of 02:25, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> and <math>Y</math> be independent random variables with uniform density functions on <math>[0,1]</math>. Find <ul><li> <math>E(|X - Y|)</math>. </li> <li> <math>E(\max(X,Y))</math>. </li> <li> <math>E(\min(X,Y))</math>. </li> <...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math] and [math]Y[/math] be independent random variables with uniform
density functions on [math][0,1][/math]. Find
- [math]E(|X - Y|)[/math].
- [math]E(\max(X,Y))[/math].
- [math]E(\min(X,Y))[/math].
- [math]E(X^2 + Y^2)[/math].
- [math]E((X + Y)^2)[/math].