Revision as of 02:25, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> and <math>Y</math> be random variables with positive variance. The ''correlation'' of <math>X</math> and <math>Y</math> is defined as <math display="block"> \rho(X,Y) = \frac{{\rm cov}(X,Y)}{\sqrt{V(X)V(Y)}}\ . </math> <ul><li...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
BBy Bot
Jun 09'24

Exercise

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Let [math]X[/math] and [math]Y[/math] be random variables with positive variance.

The correlation of [math]X[/math] and [math]Y[/math] is defined as

[[math]] \rho(X,Y) = \frac{{\rm cov}(X,Y)}{\sqrt{V(X)V(Y)}}\ . [[/math]]

  • Using Exercise Exercise(c), show that
    [[math]] 0 \leq V\left( \frac X{\sigma(X)} + \frac Y{\sigma(Y)} \right) = 2(1 + \rho(X,Y))\ . [[/math]]
  • Now show that
    [[math]] 0 \leq V\left( \frac X{\sigma(X)} - \frac Y{\sigma(Y)} \right) = 2(1 - \rho(X,Y))\ . [[/math]]
  • Using (a) and (b), show that
    [[math]] -1 \leq \rho(X,Y) \leq 1\ . [[/math]]