Revision as of 02:28, 9 June 2024 by Bot (Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with values exponentially distributed over <math>[0,\infty)</math> with parameter <math>\lambda = 0.1</math>. <ul><li> Find the mean and variance of <math>X</math>. </li> <li> Using Chebyshev's In...")
BBy Bot
Jun 09'24
Exercise
[math]
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}[/math]
Let [math]X[/math] be a continuous random variable with values exponentially
distributed over [math][0,\infty)[/math] with parameter [math]\lambda = 0.1[/math].
- Find the mean and variance of [math]X[/math].
- Using Chebyshev's Inequality, find an upper bound for the following probabilities: [math]P(|X - 10| \geq 2)[/math], [math]P(|X - 10| \geq 5)[/math], [math]P(|X - 10| \geq 9)[/math], and [math]P(|X - 10| \geq 20)[/math].
- Calculate these probabilities exactly, and compare with the bounds in (b).