Exercise
May 09'23
Answer
Solution: C
Let [math]T[/math] be the time of registration. Due to symmetry of the density function about 6.5. The constant of proportionality, c, can be solved from
[[math]]
0.5 = \int_0^{0.5}c \frac{1}{t+1} dt = c \ln(t+1) \Big |_0^{6.5} = c\ln(7.5),
[[/math]]
which gives [math]c = 0.5/\ln(7.5) [/math]. Again using the symmetry, if 60th percentile of [math]T[/math] is at [math]k[/math], then [math]\operatorname{P}[T ≤ 13 − k ] = 0.4.[/math] Thus,
[[math]]
\begin{align*}
0.4 &= \operatorname{P}[T \leq 13-k] = \int_0^{13-k} \frac{0.5}{\ln(7.5)} \frac{1}{t+1} dt = \frac{0.5}{\ln(7.5)} \ln(14-k) \\
\ln(14-k) &= 0.8\ln(7.5) = 1.6119 \\
14-k &= e^{1.6119} = 5.0124 \\
k &= 8.99
\end{align*}
[[/math]]