Exercise
ABy Admin
Jul 25'24
Answer
We define the following variables:
- [math]R_{i,I} [/math] equals the expected loss per exposure unit for level [math]i [/math] divided by the expected loss per exposure unit for level I.
- [math]R_{i,T} [/math] equals the targeted ratio of the rate for level [math]i[/math] over the rate for level I.
- [math]\mu [/math] equals the expected loss per exposure unit for level I.
- [math]B[/math] equals the rate per exposure unit for level I.
- [math]w_i [/math] denotes the exposure weight for level [math]i[/math].
Given the definitions above, the exposure weighted expected pure premium equals
[[math]]
\mu \sum_{i}w_i R_{i,I}
[[/math]]
, the exposure weighted rate per exposure unit equals
[[math]]
B \sum_{i}w_i R_{i,T}
[[/math]]
and the expected loss ratio equals
[[math]]
\frac{\mu}{B} \frac{ \sum_{i}w_i R_{i,I} }{\sum_{i}w_i R_{i,T} }.
[[/math]]
Using the values given in the question, we have
Level i | [math]R_{i,I} [/math] |
---|---|
I | 1 |
II | 1.35 |
III | 1.425 |
, [math]\sum_{i}w_i R_{i,I} = 1.19375[/math] and [math] \sum_{i}w_i R_{i,T} = 1.065[/math]. In particular, the expected loss ratio equals 1,120.89 divided by [math]B[/math]. Since the target expected loss ratio is 0.85, the rates per exposure unit are as follows: $1,318.69 for base level I, $1,450.56 for level II and $1,516.49 for level III.