Exercise
May 05'23
Answer
Solution: A
Let [math]f_1(x)[/math] denote the marginal density function of X. Then
[[math]]
f_1(x) = \int_x^{x+1}2x dy = 2xy \Big |_x^{x+1} = 2x(x+1-x) = 2x, \, 0 \lt x \lt 1.
[[/math]]
Consequently,
[[math]]
f(y |x) = \frac{f(x,y)}{f_1(x)} = \begin{cases} 1, \, x \lt y \lt x+ 1 \\ 0, \, \textrm{otherwise} \end{cases}
[[/math]]
Consequently,
[[math]]
f(y | x) = \frac{f(x,y)}{f_1(x)} = \begin{cases} 1, \, x \lt y \lt x+ 1 \\ 0, \, \textrm{otherwise}\end{cases}
[[/math]]
[[math]]
\begin{align*}
E[Y | X ] = \int_x^{x+1} ydy = \frac{1}{2}y^2 \Big |_{x}^{x+1} ydy &= \frac{1}{2}y^2 \Big |_x^{x+1}\\ &= \frac{1}{2}(x+1)^2 - \frac{1}{2}x^2 \\ &= \frac{1}{2}x^2 + x+ \frac{1}{2} - \frac{1}{2}x^2\\ &= x + \frac{1}{2}
\end{align*}
[[/math]]
[[math]]
\begin{align*}
E[Y^2 | X ] = \int_x^{x+1}y^2 dy \frac{1}{3}y^3 \Big |_{x}^{x+1} = \frac{1}{3}(x+1)^3- \frac{1}{3}x^3 \\
= \frac{1}{3}x^3 + x^2 + x+ \frac{1}{3} - \frac{1}{3}x^3 = x^2 + x + \frac{1}{3}
\end{align*}
[[/math]]
[[math]]
\begin{align*}
\operatorname{Var}[Y | X] &= E[Y^2 | X] - \{ E[Y | X]\}^2 = x^2 + x + \frac{1}{3} - (x + \frac{1}{2})^2 \\
&= x^2 + x + \frac{1}{3} - x^2 -x - \frac{1}{4} \\ &= \frac{1}{12}
\end{align*}
[[/math]]