Exercise
May 05'23
Answer
Solution: D
[[math]]
\textrm{Prob.} = 1 - \int_1^2\int_1^2 \frac{1}{8}(x+y) dx dy = 0.625.
[[/math]]
Note
[[math]]
\begin{align*}
\operatorname{P}[(X \leq 1) \cup ( Y \leq 1 ) ] &= \operatorname{P} \left \{ [(X\gt1) \cap (Y \gt 1) ]^c \right \} \,\, \textrm{(De Morgan's Law)} \\
&= 1-\operatorname{P}[(X\gt1) \cap (Y \cap 1)] \\
&= 1 - \int_1^2\int_1^2 \frac{1}{8} (x+y) dx \, dy \\
&= 1-\frac{1}{8}\int_1^2 \frac{1}{2}(x+y)^2 \Big |_1^2 dy \\
&= 1 - \frac{1}{16}\int_1^2 [(y+2)^2 - (y+1)^2] dy \\
&= 1 - \frac{1}{48} [ (y+2)^2 - (y+1)^3 ] \Big |_1^2 \\
&= 1- \frac{1}{48}(64-27-27 + 8) \\
&= 1- \frac{18}{48} = \frac{30}{48} \\
&= 0.625.
\end{align*}
[[/math]]