Exercise


May 05'23

Answer

Solution: D

[[math]] \textrm{Prob.} = 1 - \int_1^2\int_1^2 \frac{1}{8}(x+y) dx dy = 0.625. [[/math]]

Note

[[math]] \begin{align*} \operatorname{P}[(X \leq 1) \cup ( Y \leq 1 ) ] &= \operatorname{P} \left \{ [(X\gt1) \cap (Y \gt 1) ]^c \right \} \,\, \textrm{(De Morgan's Law)} \\ &= 1-\operatorname{P}[(X\gt1) \cap (Y \cap 1)] \\ &= 1 - \int_1^2\int_1^2 \frac{1}{8} (x+y) dx \, dy \\ &= 1-\frac{1}{8}\int_1^2 \frac{1}{2}(x+y)^2 \Big |_1^2 dy \\ &= 1 - \frac{1}{16}\int_1^2 [(y+2)^2 - (y+1)^2] dy \\ &= 1 - \frac{1}{48} [ (y+2)^2 - (y+1)^3 ] \Big |_1^2 \\ &= 1- \frac{1}{48}(64-27-27 + 8) \\ &= 1- \frac{18}{48} = \frac{30}{48} \\ &= 0.625. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00