Exercise


ABy Admin
May 03'23

Answer

Solution: A

Let

[math]C[/math] = Event that shipment came from Company X

[math]I_1[/math] = Event that one of the vaccine vials tested is ineffective

Then by Bayes’ Formula,

[[math]] \operatorname{P}[C | I ] = \frac{\operatorname{P}[ I_1 | C ] \operatorname{P}[ C ]}{\operatorname{P}[ I_1 | C ] \operatorname{P}[ C ] + \operatorname{P}[ I_1 | C^c ] \operatorname{P}[C^c ]}. [[/math]]

Now

[[math]] \begin{align*} \operatorname{P}[C] &= 1/5 \\ \operatorname{P}[C^c] &= 1-1/5 = 4/5 \\ \operatorname{P}[ I_1 | C ] &= \binom{30}{1}(0.1)(0.9)^{29} = 0.141 \\ \operatorname{P}[I_1 | C^c] &= \binom{30}{1}(0.02)(0.98)^{29} = 0.334 \end{align*} [[/math]]

Therefore,

[[math]] \operatorname{P}[C | I_1] = \frac{(0.141)(1/5)}{(0.141)(1/ 5) + ( 0.334 )( 4 / 5)} = 0.096 [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00