Exercise


May 05'23

Answer

Solution: C

The marginal density of X is given by

[[math]] f_X(x) = \int_0^1 \frac{1}{64}(10-xy^2) dy = \frac{1}{64}(10y - \frac{xy^3}{3}) \Big |_0^1 = \frac{1}{64}(10-\frac{x}{3}). [[/math]]

Then

[[math]] \begin{align*} \operatorname{E}(X) = \int_2^{10}xf_X(x) dx &= \int_2^{10} \frac{1}{64}(10x - \frac{x^2}{3}) dx \\ &= \frac{1}{64}(5x^2 - \frac{x^3}{9})\Big |_2^{10} \\ &= \frac{1}{64} \left [ \left( 500 - \frac{1000}{9}\right ) - \left( 20 - \frac{8}{9}\right)\right ] \\ &= 5.778. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00