Exercise
May 05'23
Answer
Solution: C
The domain of X and Y is pictured below. The shaded region is the portion of the domain over which X < 0.2 .
Now observe
[[math]]
\begin{align*}
\operatorname{P}[ X \lt 0.2 ] &= \int_0^{0.2} \int_0^{1-x} 6[1-(x+y)] dy dx \\
&= 6 \int_0^{0.2} [y - xy - \frac{1}{2} y^2]_0^{1-x} dx \\
&= 6 \int_0^{0.2} [1 - x - x(1-x) - \frac{1}{2}(1-x)^2 ]dx \\
&= 6 \int_0^{0.2} [(1-x)^2 - \frac{1}{2}(1-x)^2 ]dx \\
&= 6 \int_0^{0.2} \frac{1}{2}(1-x)^2 \, dx \\
&= -(1-x)^3 \Big |_0^{0.2} \\
&= -(0.8)^3 + 1\\
&=0.488.
\end{align*}
[[/math]]