Exercise


May 05'23

Answer

Solution: C

The domain of X and Y is pictured below. The shaded region is the portion of the domain over which X < 0.2 .

Now observe

[[math]] \begin{align*} \operatorname{P}[ X \lt 0.2 ] &= \int_0^{0.2} \int_0^{1-x} 6[1-(x+y)] dy dx \\ &= 6 \int_0^{0.2} [y - xy - \frac{1}{2} y^2]_0^{1-x} dx \\ &= 6 \int_0^{0.2} [1 - x - x(1-x) - \frac{1}{2}(1-x)^2 ]dx \\ &= 6 \int_0^{0.2} [(1-x)^2 - \frac{1}{2}(1-x)^2 ]dx \\ &= 6 \int_0^{0.2} \frac{1}{2}(1-x)^2 \, dx \\ &= -(1-x)^3 \Big |_0^{0.2} \\ &= -(0.8)^3 + 1\\ &=0.488. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00