Exercise
May 13'23
Answer
Key: B
The likelihood function is
[[math]]\frac{e^{-1 /(2 \theta)}}{2 \theta} \frac{e^{-2 /(2 \theta)}}{2 \theta} \frac{e^{-3 /(2 \theta)}}{2 \theta} \frac{e^{-15 /(3 \theta)}}{3 \theta}=\frac{e^{-8 / \theta}}{24 \theta^{4}}[[/math]]
. The loglikelihood function is [math]-\ln (24)-4 \ln (\theta)-8 / \theta[/math]. Differentiating with respect to [math]\theta[/math] and setting the result equal to 0 yields
[[math]]-\frac{4}{\theta}+\frac{8}{\theta^{2}}=0[[/math]]
which produces [math]\hat{\theta}=2[/math]