Exercise


May 13'23

Answer

Key: D

[[math]] \begin{aligned} L(\omega) &= \frac{\frac{1}{\omega}\frac{1}{\omega}\frac{1}{\omega}\left(\frac{\omega-4-p}{\omega}\right)^2}{(\frac{\omega-4}{\omega})^5} = \frac{(\omega-4-p)^2}{(\omega-4)^5} \\ l(\omega) &= 2 \ln(\omega − 4 − p ) − 5\ln(\omega − 4), l ^{'}(\omega ) = \frac{2}{\omega - 4 - p} - \frac{5}{\omega -4} = 0 \\ 0 &= l^{'}(29) = \frac{2}{25-p} - \frac{5}{25} \Rightarrow p = 15. \end{aligned} [[/math]]

The denominator in the likelihood function is S(4) to the power of five to reflect the fact that it is known that each observation is greater than 4.

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00