Exercise


ABy Admin
May 14'23

Answer

Key: B

First restate the table to be CAC’s cost, after the [math]10 \%[/math] payment by the auto owner:

Towing Cost, [math]x[/math] [math]p(x)[/math]
72 [math]50 \%[/math]
90 [math]40 \%[/math]
144 [math]10 \%[/math]


Then

[[math]]\operatorname{E}(X)=0.5(72)+0.4(90)+0.1(144)=86.4[[/math]]

[[math]]E\left(X^{2}\right)=0.5\left(72^{2}\right)+0.4\left(90^{2}\right)+0.1\left(144^{2}\right)=7905.6[[/math]]

[[math]]\operatorname{Var}(X)=7905.6-86.4^{2}=440.64[[/math]]

Because Poisson,

[[math]]\operatorname{E}(N)=\operatorname{Var}(N)=1000[[/math]]

[[math]]\operatorname{E}(S)=\operatorname{E}(X) \operatorname{E}(N)=86.4(1000)=86,400[[/math]]

[[math]]\operatorname{Var}(S)=\operatorname{E}(N) \operatorname{Var}(X)+\operatorname{E}(X)^{2} \operatorname{Var}(N)=1000(440.64)+86.4^{2}(1000)=7,905,600[[/math]]

[[math]]\operatorname{Pr}(S\gt90,000)+\operatorname{Pr}\left(\frac{S-\operatorname{E}(S)}{\sqrt{\operatorname{Var}(S)}}\gt\frac{90,000-86,400}{\sqrt{7,905,600}}\right)=\operatorname{Pr}(Z\gt1.28)=1-\Phi(1.28)=0.10[[/math]]

Since the frequency is Poisson, you could also have used

[[math]]\operatorname{Var}(S)=\lambda E\left(X^{2}\right)=1000(7905.6)=7,905,600[[/math]]

. That way, you would not need to have calculated [math]\operatorname{Var}(X)[/math].

00