Exercise
May 08'23
Answer
Solution: E
Let M be the size of a family that visits the park and let N be the number of members of that family that ride the roller coaster. We want [math]\operatorname{P}(M = 6 | N = 5).[/math] By Bayes theorem
[[math]]
\begin{align*}
\operatorname{P}(M = 6 | N = 5) &= \frac{\operatorname{P}(N = 5 | M = 6) \operatorname{P}(M =6)}{\sum_{m=1}^7 \operatorname{P}(N =5 | M=m) \operatorname{P}(M=m)} \\
&= \frac{\frac{1}{6} \frac{2}{28}}{0 + 0 + 0 + 0 + \frac{1}{5} \frac{3}{28} + \frac{1}{6}\frac{3}{28} + \frac{1}{6}\frac{2}{28} + \frac{1}{7}\frac{1}{28}} \\
&= \frac{\frac{1}{3}}{\frac{3}{5} + \frac{1}{3} + \frac{1}{7}} = \frac{35}{63 + 35 + 15} = \frac{35}{113} \approx 0.3097.
\end{align*}
[[/math]]