Exercise


Nov 20'23

Answer

Solution: C

Let [math]i[/math] be the yield rate. Then,

[[math]] \begin{aligned} & 3609.29=2000(2 i) a_{\overline{30}|i}+2250(1+i)^{-30} \\ & =4000\left[1-(1+i)^{-30}\right]+2250(1+i)^{-30} \\ & (1+i)^{-30}=(4000-3609.29) /(4000-2250)=0.22326 \\ & i=0.22326^{-1 / 30}-1=0.051251 . \end{aligned} [[/math]]

Modified duration is Macaulay duration divided by one plus the yield rate: [math]14.14 / 1.051251=[/math] 13.71.

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00