Exercise
ABy Admin
May 07'23
Answer
Solution: D
We have [math]Y = 0 [/math] when [math]X \lt d [/math] and [math]Y = X-d [/math] otherwise. Then, noting that the second moment of an exponential random variable is twice the square of the mean,
[[math]]
\begin{align*}
\operatorname{E}(Y) &= \int_0^d 0(0.01e^{-0.1x}) dx + \int_d^{\infty} (x-d)(0.1e^{-0.1x}) dx \\
&= 0 + \int_0^{\infty}x(0.1e^{-0.1(x+d)})dx = e^{-0.1d}(10)
\end{align*}
[[/math]]
[[math]]
\begin{align*}
\operatorname{E}(Y^2) &= \int_0^d 0^2(0.01e^{-0.1x}) dx + \int_d^{\infty} (x-d)^2(0.1e^{-0.1x}) dx \\
&= 0 + \int_0^{\infty}x^2(0.1e^{-0.1(x+d)})dx = e^{-0.1d}(200)
\end{align*}
[[/math]]
[[math]]
\operatorname{Var}(Y) = e^{-0.1d}(200) - [e^{-0.1d}(10)]^2 = 100[2e^{-0.1d}-e^{-0.2d}].
[[/math]]