Exercise
ABy Admin
May 14'23
Answer
Key: C
Let [math]N=[/math] number of computers in department
Let [math]X=[/math] cost of a maintenance call
Let [math]S=[/math] aggregate cost
[math]\operatorname{Var}(X)=[\operatorname{Standard~Deviation~}(X)]^{2}=200^{2}=40,000[/math]
[math]\operatorname{E}(X^{2})=\operatorname{Var}(X)+[\operatorname{E}(X)]^{2} =40,000+80^{2}=46,400[/math]
[math]\operatorname{E}(S)=N \lambda \operatorname{E}(X)=N(3)(80)=240 N[/math]
[math]\operatorname{Var}(S)=N \lambda \times \operatorname{E}(X^{2})=N(3)(46,400)=139,200 N[/math]
We want
[[math]]
\begin{aligned}
0.1 \geq \operatorname{Pr}(S\gt1.2 \operatorname{E}(S))
\geq \operatorname{Pr}\left(\frac{S-\operatorname{E}(S)}{\sqrt{139,200 N}}\gt\frac{0.2 \operatorname{E}(S)}{\sqrt{139,200 N}}\right) \Rightarrow \frac{0.2(240) N}{373.1 \sqrt{N}} & \geq 1.282 \\
&=\Phi(0.9)N \\
&\geq\left(\frac{1.282(373.1)}{48}\right)^{2} \\ &=99.3
\end{aligned}
[[/math]]