Exercise
ABy Admin
May 06'23
Answer
Solution: A
The calculation requires integrating over the indicated region.
[[math]]
\operatorname{E}(X) = \int_0^1\int_x^{2x} \frac{8}{3} x^2 y dy dx = \int_0^{1} \frac{4}{3} x^2y^2 \Big |_x^{2x} dx = \int_0^1 \frac{4}{3}x(4x^2-x^2) dx = \int_0^1 4x^4 dx = \frac{4}{5}x^5 \Big | _0^1 = \frac{4}{5}.
[[/math]]
[[math]]
\operatorname{E}(Y) = \int_0^1\int_x^{2x} \frac{8}{3} x y^2 dy dx = \int_0^{1} \frac{8}{9} xy^3 \Big |_x^{2x} dy dx = \int_0^1 \frac{8}{9}x(8x^3-x^3) dx = \int_0^1 \frac{56}{9}x^4 dx = \frac{56}{45}x^5 \Big | _0^1 = \frac{56}{45}.
[[/math]]
[[math]]
\operatorname{E}(XY) = \int_0^1\int_x^{2x} \frac{8}{3} x^2 y^2 dy dx = \int_0^{1} \frac{8}{9} x^2y^3 \Big |_x^{2x} dx = \int_0^1 \frac{8}{9}x^2(8x^3-x^3) dx = \int_0^1 \frac{56}{9}x^5 dx = \frac{56}{54} = \frac{28}{27}.
[[/math]]
[[math]]
\operatorname{Cov}(X,Y) = \operatorname{E}(XY) - \operatorname{E}(X)\operatorname{E}(Y) = \frac{28}{27} - \left( \frac{56}{45} \right) \left ( \frac{4}{5} \right ) = 0.04.
[[/math]]