A time series was observed at times 0, 1, …, 100. The last four observations along with estimates based on exponential and double exponential smoothing with [math]w = 0.8[/math] are:
Time (t) |
97 |
98 |
99 |
100
|
Observation ( [math]y_t[/math] ) |
96.9 |
98.1 |
99.0 |
100.2
|
Estimates ( [math]\hat{s_1}(t) [/math] |
93.1 |
94.1 |
95.1 |
|
Estimates ( [math]\hat{s_2}(t)[/math] |
88.9 |
89.9 |
|
|
All forecasts should be rounded to one decimal place and the trend should be rounded to three decimal places.
Let [math]F[/math] be the predicted value of [math]y_{102}[/math] using exponential smoothing with [math]w = 0.8.[/math]
Let [math]G[/math] be the predicted value of [math]y_{102}[/math] using double exponential smoothing with [math]w = 0.8.[/math]
Calculate the absolute difference between [math]F[/math] and [math]G[/math], [math]| F − G |[/math] .
Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.