Exercise


ABy Admin
Nov 19'23

Answer

Solution: B

The present value equation for a par-valued annual coupon bond is [math]P = Fv^n + Fra_{\overline{n}|i}[/math]; solving for the coupon rate r yields

[[math]] r={\frac{P-F\nu_{i}^{\ n}}{F a_{\overline{{{n}}}|i}}}={\frac{P}{a_{\overline{{{n}}}|i}}}{\left(\frac{1}{F}\right)-{\frac{\nu_{i}^{\ n}}{a_{\overline{{{n}}}|i}}}}. [[/math]]

From the first two bonds: 0.0528 = x/1000 + y and 0.0440 = x/1100 + y. Then, 0.0528 – 0.044 = x(1/1000 – 1/1100) for x = 96.8 and y = 0.0528 – 96.8/1000 = –0.044. For the third bond, r = 96.8/1320 – 0.044 = 0.2933 = 2.93%.

Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

00