Exercise
ABy Admin
May 14'23
Answer
Key: A
Let S = aggregate losses, X = severity
Since the frequency is Poisson,
[[math]]
\begin{aligned}
\operatorname{E}(S) - \lambda \operatorname{E}(X^2) \\
\operatorname{E}(X^2) = \frac{2^2 \Gamma(3) \Gamma(1) }{\Gamma(3)} = 4 \, \textrm{(table lookup)} \\
\operatorname{E}(S) = 3(4) = 12
\end{aligned}
[[/math]]
You would get the same result if you used
[[math]]
\operatorname{E}[ S ] = \operatorname{E}[ N ]\operatorname{E}[ X ] + \operatorname{E}[ N ] \operatorname{E}[ X ]^2
[[/math]]