An investor’s retirement account pays an annual nominal interest rate of 4.2%, convertible
monthly. On January 1 of year y, the investor’s account balance was X. The investor then deposited 100 at
the end of every quarter. On May 1 of year (y + 10), the account balance was 1.9X.
Determine which of the following is an equation of value that can be used to solve for X.
[[math]]\frac{1.9X}{\left(1.0105\right)^{\frac{124}{3}}}+\sum_{k=1}^{42}\frac{100}{\left(1.0105\right)^{k-1}}=X
[[/math]]
[[math]]X+\sum_{k=1}^{42}{\frac{100}{(1.0035)^{3(k-1)}}}={\frac{1.9X}{(1.0035)^{124}}}
[[/math]]
[[math]]X+\sum_{k=1}^{41}\frac{100}{(1.0035)^{3k}}=\frac{1.9X}{(1.0035)^{124}}[[/math]]
[[math]]X+\sum_{k=1}^{41}{\frac{100}{(1.0105)^{k-1}}}={\frac{1.9X}{(1.01105)^{\frac{124}{3}}}}
[[/math]]
[[math]]X+\sum_{k=1}^{42}{\frac{100}{(1.0105)^{k-1}}}={\frac{1.9X}{(1.0105)^{\frac{124}{3}}}}[[/math]]
Copyright 2023 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.